

THE FUTURE OF CARBON

Building Resilience in a Defossilized World

Kristin MarshallAssociate Research
Director

Mukunda Kaushik Senior Analyst

A STORY OF EVOLUTION

BBoron
10.81

6 Carbon 12.01

Nitrogen 14.01

Aluminum 26.98

Silicon 28.08

14

Phosphorous
30.97

NESTE'S RENEWABLE DIESEL SITES

NESTE'S GLOBAL PARTNERSHIPS

PE & PP plastics

Polyurethanes

NESTE'S TIMELINE FOR THE FUTURE

2020

Launched formal evaluation to transition Porvoo into global renewable and circular site

2030

Aims to reduce customers' greenhouse gas emissions by 20 Mtonne/y 2040

Aims to reduce "use phase" emissions of products sold and value chain emissions

2025
Aims to support carbon-neutral aviation

2030s

End crude oil refining and reach carbon-neutral production

Finland's Neste shares plummet on downbeat biofuel sales margin outlook

By Reuters

February 8, 2024 2:12 AM PST · Updated 9 months ago

6:06 PM | February 14, 2025

. .

Oil refiner Neste says CEO Matti Lehmus will be stepping down

By Reuters

April 29, 2024 12:33 PM PDT · Updated 6 months ago

Refiner Neste warns of weaker biofuel outlook, shares drop

By Elviira Luoma and Essi Lehto

September 11, 2024 4:46 AM PDT \cdot Updated 2 months ago

A STORY OF EVOLUTION

Renewable hydrocarbons for fuels

The Future

SUPPLY CHAIN RESILIENCE

DECARBONIZING MATERIAL INPUTS

WASTE VALORIZATION

The evolution of carbon has begun — your job is to identify the future-proof opportunities

AGENDA

01 Understanding the pathways to defossilize

02 Evaluating defossilization opportunities

O3 Finding the right time to engage

IMPACT OF INDUSTRIAL DEFOSSILIZATION

Upstream and downstream impacts

IMPACT OF INDUSTRIAL DEFOSSILIZATION

Upstream energy providers risk losing customers

Oil & Gas Industry

Crude oil

Naphtha

Natural gas

IMPACT OF INDUSTRIAL DEFOSSILIZATION

Downstream customers risk higher raw materials cost

IMPACT OF DEFOSSILIZATION

Oil & Gas Industry

Chemicals Industry

Products

Crude oils

Naphtha

Natural gas

Base

Methanol Olefins Aromatics **Specialty**

Adhesives
Coatings
Dyes
Surfactants

Electronics

Automotive

Textiles

ASSUMING PRODUCTS DON'T CHANGE

Oil & Gas Industry

Crude oils

Naphtha

Natural gas

Chemicals Industry

Base

Methanol Olefins Aromatics **Specialty**

Adhesives
Coatings
Dyes
Surfactants

Products

Electronics

Automotive

Textiles

THE FEEDSTOCK LEVER MUST EVOLVE

Chemicals Industry Products Electronics Specialty Base Renewable Carbon **Feedstock Automotive** Adhesives Methanol Olefins Coatings **Textiles** Aromatics Dyes Surfactants

SIMPLIFIED FEEDSTOCK HIERARCHY

BUT REALITY IS LESS LINEAR

Feedstock-process-product alignment is critical to evolve carbon sources

FEEDSTOCK

PROCESS

PRODUCT

$$c - c$$

$$C - C - C$$

2 WAYS OF VIEWING THE PROBLEM

The feedstock lens

2 WAYS OF VIEWING THE PROBLEM

The product lens

FEEDSTOCK-PROCESS ALIGNMENT

Different feedstocks will require different processing

FEEDSTOCK

$$c - c$$

$$C - C - C$$

$$C - C - C$$

BUT NEW FEEDSTOCK NEEDS NEW TECH

FEEDSTOCK-PRODUCT ALIGNMENT

Not all feedstocks are suitable for all products

FEEDSTOCK

PRODUCT

$$c-c-c$$

$$C - C - C$$

AGENDA

Ol Understanding the pathways to defossilize

O2 Evaluating defossilization opportunities

O3 Finding the right time to engage

Feedstock-process-product alignment is critical to evolve carbon sources.

FEEDSTOCK

$$c - c$$

$$C - C - C$$

A methodology to evaluate defossilization opportunities

FEEDSTOCK

PROCESS

PRODUCT

Demand

Marketability

A methodology to evaluate defossilization opportunities

FEEDSTOCK

Availability

PROCESS

PRODUCT

Demand

Marketability

A methodology to evaluate defossilization opportunities

FEEDSTOCK

Availability

PROCESS

Resource intensity

Tech maturity

Production cost

PRODUCT

Demand

Marketability

DEFOSSILIZING ETHYLENE

ETHYLENE DEFOSSILIZATION OPTIONS

	Feedstock Availability	Resource Intensity	Tech Maturity	Production Cost	Demand	Market- ability
Pyrolysis						
Biomass balancing						
De- hydration						
Synbio						
Electrolysis						

	Feedstock Availability	Resource Intensity	Tech Maturity	Pro Cos	duction st	Demand	Market- ability			
Pyrolysis										
Biomass balancing						Assess the link etween feedstock				
De- hydration						availability and chnology maturity for the long term				
Synbio										
Electrolysis										

	Feedstock Availability	Resource Intensity	Tech Maturity	Production Cost	Demand	Market- ability			
Pyrolysis									
Biomass balancing									
De- hydration		Create near-term opportunities							
Synbio		through infrastructure investment							
Electrolysis									

	Feedsto Availabi		Resource Intensity	Tech Maturity	Produ Cost	ction	Demand	Market- ability
Pyrolysis								
Biomass balancing		Stay aware of external defossilization drivers that impact demand						
De- hydration								
Synbio								
Electrolysis								

	Feedstock Availability	Resource Intensity	Tech Maturity	Production Cost	Demand	Market- ability
Pathway 1						
Pathway 2						
Pathway 3		ES				
Pathway 4						
Pathway 5						

AGENDA

Ol Understanding the pathways to defossilize

02 Evaluating defossilization opportunities

O3 Finding the right time to engage

A STORY OF EVOLUTION

Renewable hydrocarbons for fuels

SUPPLY CHAIN RESILIENCE

DECARBONIZING MATERIAL INPUTS

WASTE VALORIZATION

KEY TAKEAWAYS

Feedstock-processproduct alignment is critical to understanding opportunities for unlocking future carbon sources. 2

There will be nearterm opportunities exploiting the marketability of products — but pay attention to the overall strength of defossilization drivers impacting demand.

Š)

Value chain developments could also unlock pathways to defossilize, especially when they can stand in the way of mature technologies.

THANK YOU

READ

http://www.luxresearchinc.com/blog/

LISTEN

Innovation Matters Podcast - Spotify

VISIT

www.luxresearchinc.com

EMAIL

questions@luxresearchinc.com

FOLLOW

<u>@LuxResearch</u>

CONNECT

LuxResearch

ABOUT LUX

Our mission is to advise leaders about commercially viable science and technology to enable sustainable innovation. We deliver research and advisory services to inspire, illuminate, and ignite innovative thinking that reshapes and grows businesses. Using quality data derived from primary research, fact-based analysis, and opinions that challenge traditional thinking, our experts focus on finding truly disruptive innovations that are also realistic and make good business sense.

The "Lux Take" is trusted by innovation leaders around the world, many of whom seek our advice directly before placing a bet on a startup or partner — our clients rely on Lux insights to make decisions that generate fantastic business outcomes. We pride ourselves on taking a rigorous, scientific approach to avoid the hype and generate unique perspectives and insights that innovation leaders can't live without.

REAL

http://www.luxresearchinc.com/blog/

LISTEN

Innovation Matters Podcast - Spotify

VISIT

www.luxresearchinc.com

EMAIL

questions@luxresearchinc.com

FOLLOW

<u>@LuxResearch</u>

<u>LuxResearch</u>

