

BEYOND LI-ION: WHAT COMES NEXT FOR EV BATTERIES?

Chris RobinsonResearch Director

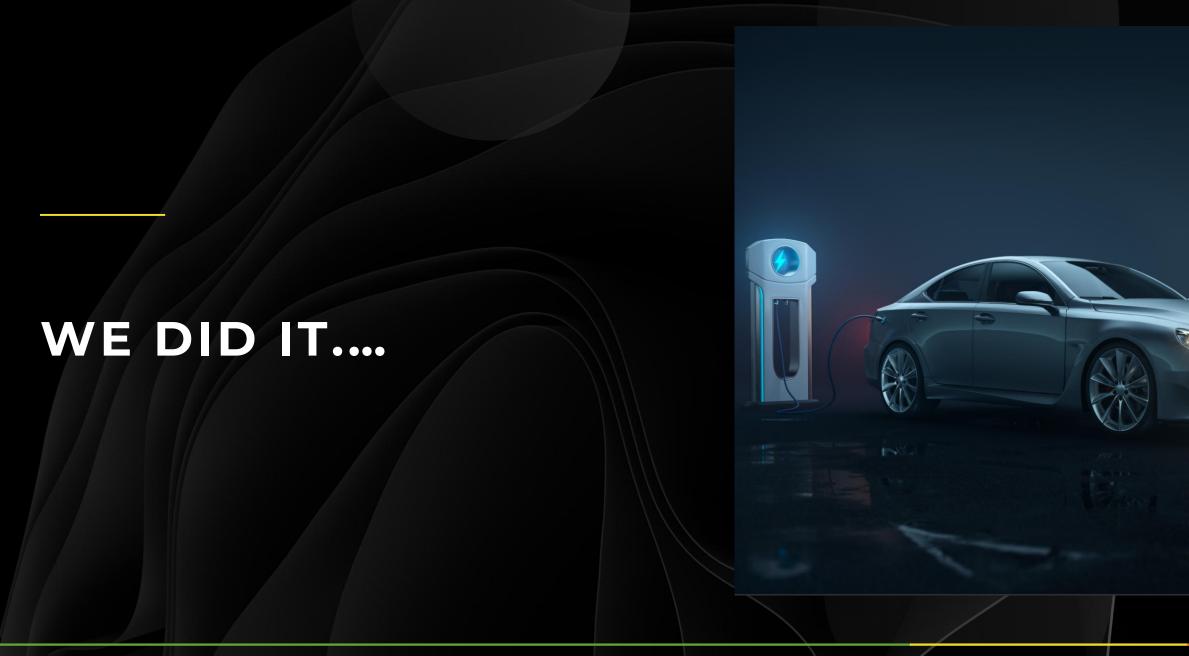
Urvi MehtaSenior Research Associate

Patrick Stange, Ph.D.
Research Associate

AGENDA

O1 Global battery market today

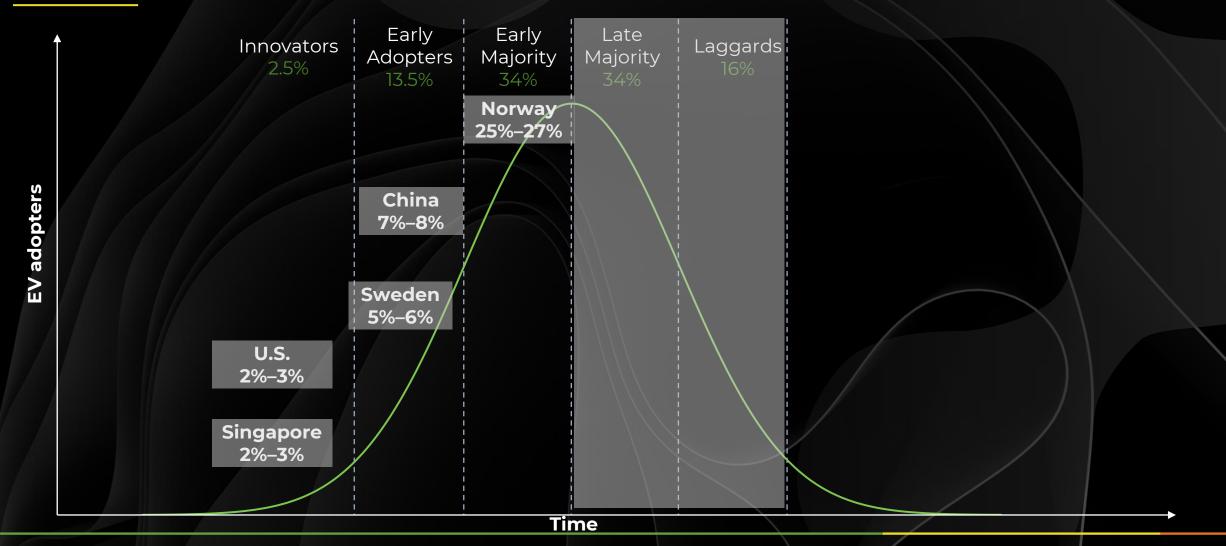
O2 Consumer perspective and innovations


03 Looking forward

66 77

In 50 years, every street in London will be buried under 9 feet of manure.

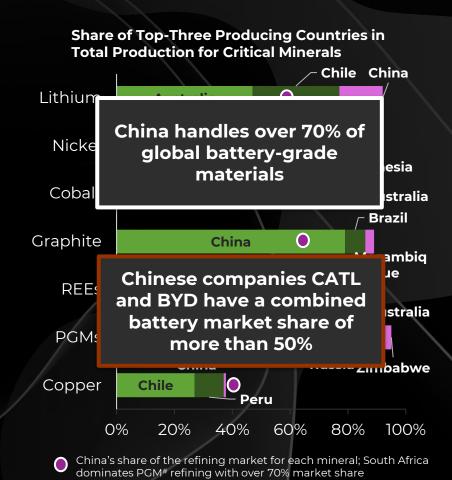
The Great Horse Manure Crisis of 1894



New EVs registered <250,000 2013 **EVs** 10 million 2022 **EVs** >14 million 2023 **EVs** >17 million 2024 **EVs**

Around 57 million EVs on the road in the world today

UNDERSTANDING THE MARKET


EUROPE'S GIGAWATT DREAMS

Planned - 400 GWh Today, more than 30% of projects have faced hurdles or been canceled

IRA IS IN JEOPARDY

CHINA IS THE DE FACTO LEADER

What are the biggest challenges?

Technology

Production

Consumer

CONSUMER

Slow adoption of EVs is directly related to consumers' ongoing concerns about technology, unreliable information, and inconsistent infrastructure.

- Driving range and charging infrastructure
- Capital and maintenance costs
- Lack of awareness

AGENDA

Olobal battery market today

O2 Consumer perspective and innovations

03 Looking forward

JOBS TO BE DONE RESEARCH METHODOLOGY

- Collect thousands of consumer product reviews around a given topic, focusing on positives and pain points.
- Analyze conversations and linguistic patterns to assess participants' deeper motivations and concerns. From these conversations, we select the top-priority jobs.
- Assess how consumers are getting the jobs done. What products are they hiring to complete these jobs, and what products are they firing?
- The process allows us to isolate consumer drivers and make recommendations.

JOBS TO BE DONE

Excessive costs associated with owning an EV

Car software enhancing driving experience

Drive long distances

Reliable battery life during cold winter days

Convenient access to charging stations

Easy-to-use infotainment system

Access to frictionless customer service

Charge EV quickly

I WANT TO AVOID EXCESSIVE COSTS ASSOCIATED WITH OWNING AN EV

Between up-front costs, electric bills, and expensive repairs and maintenance, the true cost of EV ownership is way higher than I want to spend on my car.

Occasions for Maintenance

Fixing a minor dent

Charging my EV at home

Getting insurance quotes

Hiring: EV with minimal features and cheaper parts, insurance plan with an EV discount, home solar systems

Firing: EV with high maintenance costs/expensive parts, insurance plan without an EV discount **Share of Voice**

73% of consumers either directly or indirectly connected to this job

I WANT TO DRIVE LONG DISTANCES

I rely on my car to get around, but I fear running out of battery power before reaching my destination and ending up stranded.

Occasions

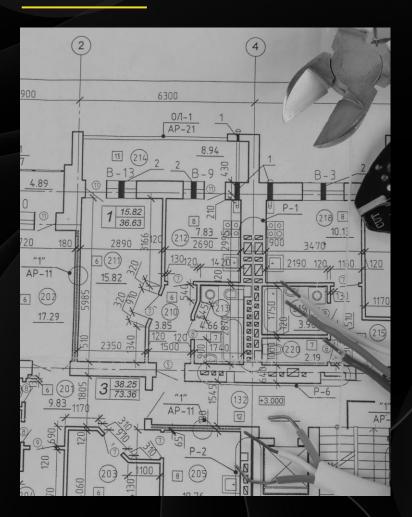
Going on a road trip

Recharging away from home

Driving to work Hiring: EVs with long ranges (at least 300-plus miles per charge)

Firing: EVs with a short range, EVs with flimsy/breakable charging ports

Share of Voice


63% of consumers either directly or indirectly connected to this job

Is there a way to address these?

TWEAKING TODAY'S BATTERIES

BUSINESS MODELS

CHEMISTRY OVERHAUL

TWEAKING TODAY'S BATTERIES

Electrode Innovation

LFP	Safety and thermal stabilityLonger cycle life	Lower energy densityPoor performance in cold temperatures			
Sulfur cathodes	High energy densityLower cost of materials	Poor cycle lifePolysulfides affecting conductivity and capacity			
Silicon anodes	Higher energy densityNot critical material	Volumetric expansionPoor cycle life			
Lithium-metal anodes	Higher energy densityHigher operating voltage enabled	Thermal runaway due to dendritic growthPoor cycling stability			

TWEAKING TODAY'S BATTERIES

Electrolyte Innovation

Safer liquid electrolytes	NonflammableHigh-temperature stability	Lower conductivityExpensive			
Gas electrolytes	High ionic conductivityResistance to thermal runaway	Requires pressure containmentLimited cyclability			
Solid-state electrolytes	Higher energy densityNext-gen electrodes enabled	Poor ionic conductivityHigh manufacturing costs			
Semisolid electrolytes	Higher ionic conductivityEnhanced safety and mechanical stability	Potential for phase separationLimited temperature stability			

TWEAKING TODAY'S BATTERIES

Electrode Innovation

Electrolyte Innovation

LFP

Sulfur cathodes

Silicon anodes

Lithium-metal anodes

Safer liquid electrolytes

Gas electrolytes

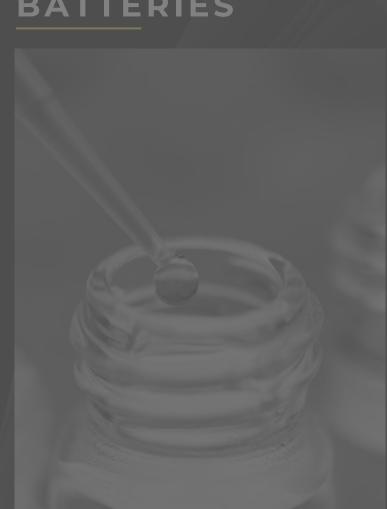
Solid-state electrolytes

Semisolid electrolytes

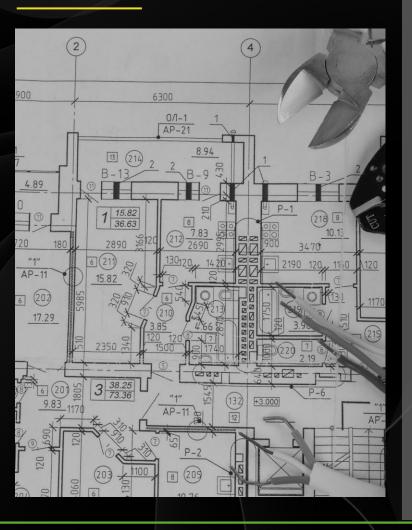
PACK-LEVEL INNOVATION

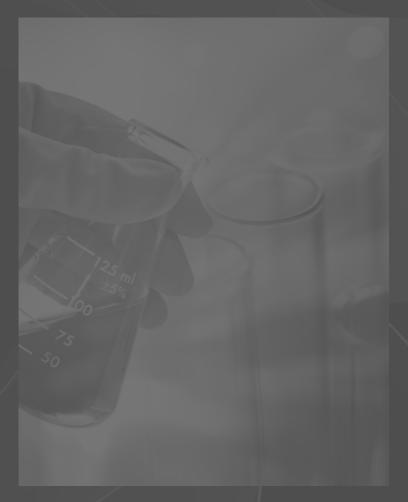

24M's electrode-to-pack technology comprises a semisolid cathode, an anode, a liquid electrolyte (Eternalyte), and a separator (Impervio) placed between the electrodes.

- Li-metal/ NMC ETOP battery yields a specific energy of 350 Wh/kg and more than 500 cycles at 83% capacity retention for 1C discharge/charge.
- It's claimed to eliminate 80% of inactive components and reduce battery costs by 50%.


The Blade Battery is a prismatic LFP battery that features a cell-to-pack design, allowing the cells to be directly integrated into the pack as a structural component.

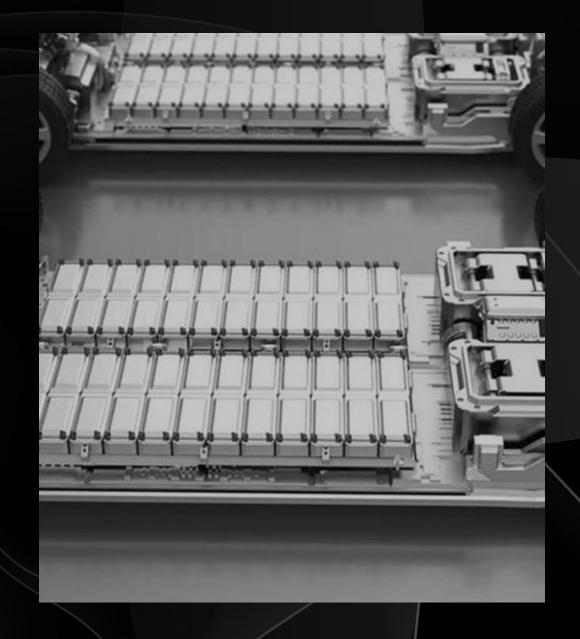
- It eliminates modules, directly integrating bladelike cells into the pack.
- The packing density increases by 50% compared with the current module.




TWEAKING TODAY'S BATTERIES

BUSINESS MODELS

CHEMISTRY OVERHAUL



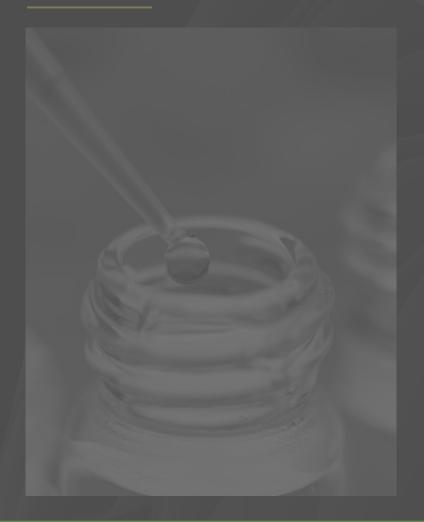
BATTERY AS A SERVICE

Lease a battery

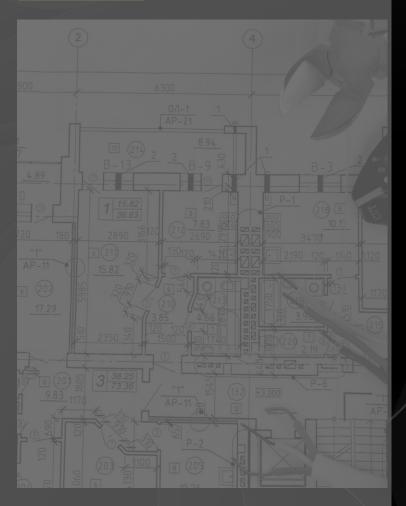
Customers buy the EV without the battery and pay a monthly fee for battery usage.

- Charging models include a subscription-based monthly fee or a variable rate based on the distance traveled in kilometers.
- It reduces the EV upfront costs by 30% to 40%.

BATTERY SWAPPING


A combined solution for grid stability and fast-charging needs

Battery swapping offers the cycle life benefits of slow-charging batteries but faster range addition than even the fastest charging stations.


- A swap can be completed under five minutes.
- It slows the degradation of the batteries.
- Swappable packs need to be standardized, which presents a barrier to adoption.

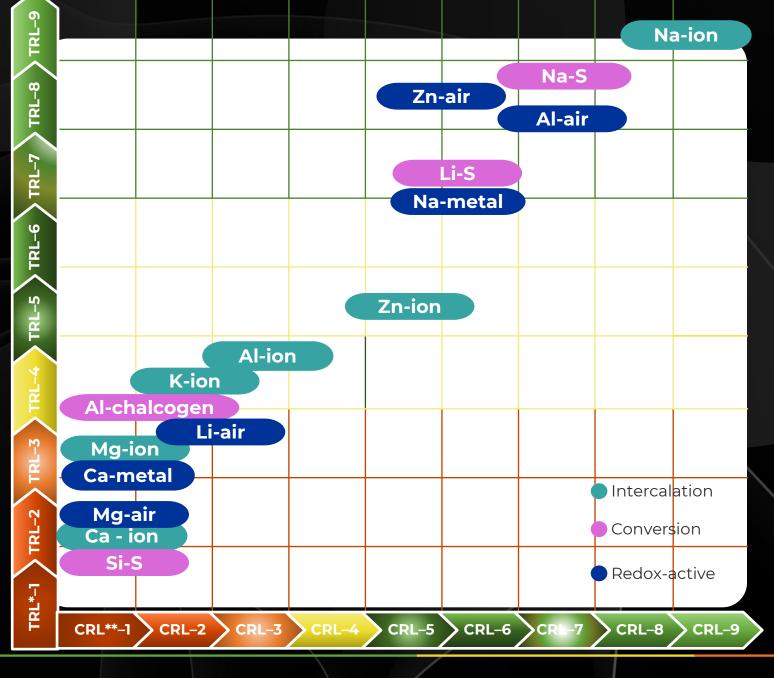
TWEAKING TODAY'S BATTERIES

BUSINESS MODELS

CHEMISTRY OVERHAUL

CHANGING THE LANDSCAPE OF LOW- AND MIDRANGE CARS

CATL – AB Battery


CATL's AB battery pack has found the right balance between introducing Na-ion without succumbing to its drawbacks and achieving lower costs through a multipurpose Li-ion manufacturing facility.

- The pack comprises Na-ion cells with Prussian blue cathode and graphite/NMC* Li-ion cells.
- The price target is USD 40/kWh, with an expected range of 250 km per charge.

BEYOND LI-ION CHEMISTRIES

The technical requirements of stationary storage and electric mobility and the lack of consolidated efforts in a single novel battery technology will keep the space fragmented and unable to surpass Li-ion demand.

AGENDA

Olobal battery market today

O2 Consumer perspective and innovations

03 Looking forward

WILL THERE BE A COMPLETE OVERHAUL?

The answer is NO.

Li-ion batteries are here to stay!

2025-2030

2030-2040

BEYOND 2040

Commercialization of battery technologies aiming to optimize energy density while ensuring a robust supply chain for raw materials, all rooted in the foundational principles of Li-ion technology

Efficient manufacturing technologies, usage of recycled or locally sourced materials, and adoption of chemistries as per applications and affordability

Adoption of beyond Liion technologies on the wider scale

Innovation in battery pack design, electrode integration, and charging infrastructure

Adoption of technologies other than Li-ion in niche and further concentration of managing life cycle of Li-ion batteries

Emergence of fuels beyond batteries

INNOVATION AND CONSUMER PRIORITY

	Cost Concerns	Range Anxiety	Charging Infrastructure Network	Software Glitches	Intuitive Infotainment System	Battery Life in Cold Climates	Efficient Charging	Poor Customer Service
EV battery swapping	3	4	2	1	1	5	5	1
Autonomous vehicles	1	4	2	5	3	1	1	3
Dynamic wireless charging	1	5	4	1	1	2	3	1
Generative AI	1	1	4	5	5	1	11	3
DC fast-charging infrastructure	1	4	3	1	1	2	4	1
Novel battery chemistries	4	2	1	1	1	3	1	1
Advanced sensors		2	1	2	2	2	2	3
Li-ion batteries	3	2	1	1	1	1	1	1
OTA software update	1	1	1	4	3	2	1	1
Consumer wearables	1	1	1	4	3	1	2	1
3D printing	2	1	1	1	1	1	1	5
Bidirectional charging	3	1	1	1	1	1	1	1
Software-defined vehicles	1	1	1	2	3	1	1	3
Thermal management materials	1	1	1	1	1	3	3	1
AR/VR	1	1	1	2	3	1	1	1
Critical minerals extraction	2	1	1	1	1	1	1	1
Novel photovoltaics	1	2	1	1	1	1	1	1
Microgrids	1	1	2	1	1	1	1	1
Advanced coatings	1	1	1	1	2	1	1	1
Biobased materials and chemicals	1	1	1	1	1	1	1	1

KEY TAKEAWAYS

Transformative business models aim to enhance the adoption of EVs.

- Implementing battery swapping and leasing options for batteries could motivate customers to consider EVs.
- Diagnostic tools for the secondary use of batteries are a must to establish EVs' reliability and transparency.

2

The vulnerability of the supply chain needs tactical resolution.

- Rather than bypassing China, slow phasing out will be a more economical solution.
- A closed-loop supply chain and vertical integration among stakeholders in the value chain are needed to stabilize production.

3

Geographically viable non-Li-ion solutions will gain momentum.

- Commercialization of alternative chemistries will be application-based.
- Policies and regulations to locally source materials will solely depend on the country's strength and citizen needs.

THANK YOU

READ

http://www.luxresearchinc.com/blog/

LISTEN

Innovation Matters Podcast - Spotify

VISIT

www.luxresearchinc.com

EMAIL

questions@luxresearchinc.com

FOLLOW

<u>@LuxResearch</u>

CONNECT

LuxResearch

ABOUT LUX

Our mission is to advise leaders about commercially viable science and technology to enable sustainable innovation. We deliver research and advisory services to inspire, illuminate, and ignite innovative thinking that reshapes and grows businesses. Using quality data derived from primary research, fact-based analysis, and opinions that challenge traditional thinking, our experts focus on finding truly disruptive innovations that are also realistic and make good business sense.

The "Lux Take" is trusted by innovation leaders around the world, many of whom seek our advice directly before placing a bet on a startup or partner — our clients rely on Lux insights to make decisions that generate fantastic business outcomes. We pride ourselves on taking a rigorous, scientific approach to avoid the hype and generate unique perspectives and insights that innovation leaders can't live without.

REAL

http://www.luxresearchinc.com/blog/

LISTEN

<u>Innovation Matters Podcast - Spotify</u>

VISIT

www.luxresearchinc.com

EMAIL

questions@luxresearchinc.com

FOLLOW

<u>@LuxResearch</u>

CONNECT

LuxResearch

