

JUNE 6, 2024

CUTTING COSTS FOR CUTTING CARBON

Low-Cost Pathways for Direct Air Capture

Thomas Briggs Research Associate

The need despite the cost

Refossilizing carbon

Securing nonfossil CO₂ feedstock Offsetting hard-toabate emissions

DAC SCALE PROJECTION

Growth in global DAC has 3 main drivers:

Refossilizing carbon

 Need for a nonfossil CO₂ source

 Offsetting hard-toabate emissions

*The Global CCS Institute projects 7,000 Mtonne of capacity at DAC costs of USD 137/tonne and 2,000 Mtonne of capacity at DAC costs of USD 237/tonne.

DAC COST PROJECTION

The decade-long promise of reaching USD 100/tonne CO₂

There are three avenues for cost reduction

• Learning curves

- Modularity
- Technology innovation

Projected DAC Cost (USD/tonne of CO₂)

5

METHODOLOGY

DAC economics are influenced by a confluence of technology and overlying market factors that need to be analyzed

METHODOLOGY

Methodology: The cost of a reference 1-Mtonne/y DAC facility

Inputs

Project capacity – tonne CO_2/y

Capital expenditure (capex)

System cost – USD/tonne CO₂

Material cost – USD/tonne CO_2

Operating expenditure (opex)

Electricity requiremt. – GJ/tonne CO₂

Cost of electricity – USD/GJ

Heat requirement – $GJ/tonne CO_2$

Cost of heat – USD/GJ

Other inputs

Engineering costs – USD/tonne CO₂

Output

Cost of DAC – USD/tonne CO₂

DAC Technologies

Calcium looping

Sorbent – Amine

Sorbent – Zeolite

Sorbent – MOF

Hybrid electroswing

Electroswing

DAC technology – Calcium looping

Technology overview, cost forecast, and developer spotlight

Calcium looping: Nonfunctionalized liquid-phase capture but requires a significant amount of high-temperature heat for desorption

Calcium looping DAC costs are estimated at USD 725/tonne CO₂

Technology Profile and Assumptions		
Heat requirement	5.25 GJ/tonne CO ₂	
Electricity requirement	1.3 GJ/tonne CO ₂	
Cost of heat	USD 10/GJ	
Cost of electricity	USD 12.5/GJ	
Reference capacity	1 Mtonne/y	
Capacity factor	0.8	
Capex learning rate	10% (from IEA*)	
Maturity	Commercial	

Note: System components include an air contactor, pellet reactor, calciner and slaker, separation unit, turbine, filter, and transformer.

Cost Breakdown (Current) – Calcium Looping USD/tonne CO₂

DAC with calcium looping will see a 60% cost reduction by 2050

Cost Forecast – Calcium Looping USD/tonne of CO_2

🕨 Lux Take

- Need for large stick-built systems makes calcium looping capex intensive.
- Need for high-temperature heat locks the technology into a natural gas infrastructure.
- Cost decreases to USD 298/tonne CO₂ in 2050.

CASE STUDY

Heirloom plans to electrify its calcium looping process in partnership with the Leilac Group.

The company already operates a 1-ktonne/y facility in the U.S. and will be part of the U.S. DOE hub, Project Cypress.

DAC technology – Hybrid electroswing

Technology overview, cost forecast, and developer spotlight

Hybrid electroswing: Uses solvents or sorbents but pointedly swaps highenergy thermochemical desorption with an electrochemical alternative

Hybrid electroswing DAC costs are estimated at USD 683/tonne CO₂

Technology Profile and Assumptions		
Heat requirement	0 GJ/tonne CO ₂	
Electricity requirement	2.5 GJ/tonne CO ₂	
Cost of heat	USD 10/GJ	
Cost of electricity	USD 12.5/GJ	
Reference capacity	1 Mtonne/y	
Capacity factor	0.9	
Capex learning rate	20%	
Maturity	Development	

Note: Analysis of hybrid electroswing is based on limited data from early stage projects and studies, and the results are indicative at best. Lux used cost data from a pilot facility and applied a 0.6 scaling factor to estimate costs for a reference 1-Mtonne/y facility. Range of compatible solvents include alkali hydroxides or carbonic anhydrase and is assumed to be readily available commodities.

Cost Breakdown (Current) – Hybrid Electroswing USD/tonne CO₂

DAC with hybrid electroswing will see an 81% cost reduction by 2050

Cost Forecast – Hybrid Electroswing USD/tonne CO₂

- Base-case electricity consumption for near-term pilots will likely be higher.
- Component-level scaling will look different for hybrid electroswing.
- Cost decreases to USD 129/tonne CO₂ in 2050.

CASE STUDY SOLVENT + ELECTROSWING

Carbon Atlantis develops a pHswing version of a hybrid electroswing system.

The company is involved in several pilots, including an undisclosedcapacity partnership with Cella Mineral Storage in Kenya.

CARBON ATLANTIS

CASE STUDY SORBENT + ELECTROSWING

Carbominer is a Ukrainian startup that develops a multistage sorbent system that utilizes ion-exchange resins and alkaline solutions.

The company completed one pilot in 2023 and recently raised a EUR 1.5 million funding round.

CASE STUDY MEMBRANE + ELECTROSWING

RepAir's system utilizes electrolysis to drive CO_2 -saturated solvents through a membrane.

The company launched its field prototype on the roof of its lab in 2023.

Outlook

Technology review and conclusions

Calcium looping and amine sorbents have scaled because of players' first-mover advantage but have several competing alternatives

Calcium Looping

Current cost: USD 725/tCO₂

2050 cost forecast: USD 298/tCO₂

- +
- Large-scale facilities with industrially ready equipment and low material risk

Need for high-temperature heat makes it challenging to reduce energy demand and integrate with renewables

Sorbent – Amine

Current cost: USD 420/tCO₂

2050 cost forecast: USD 140/tCO₂

Uses low-temperature heat and strongly benefits from system modularity

+

Still has a high energy consumption and can have improved sorbent lifetime

Sorbent – Zeolite

Current cost: USD 490/tCO₂

2050 cost forecast: USD 287/tCO₂

Readily available sorbent that allows immediate and nearterm scale-up

Highest energy demand of all DAC pathways; competing selectivity for water

Electroswing skirts the majority of DAC opex by reducing or completely avoiding heat but will need low-cost renewable electricity

Sorbent – MOF

┿

Current cost: USD 4,560/tCO₂

2050 cost forecast: USD 1,274/tCO₂

Lowest energy demand of all
sorbents; compatible with
vacuum/moisture desorption

Current manufacturing costs are highly prohibitive of adoption

Hybrid Electroswing

+

Current cost: USD 683/tCO₂

2050 cost forecast: USD 129/tCO₂

No-heat process uses established acid-base chemistry; lower need for heat tolerance reduces system capex

Component-level scalability is
 yet to be fully analyzed; will need low-cost renewables

Electroswing

Current cost: USD 216/tCO₂

2050 cost forecast: USD 136/tCO₂

Zero-heat process that shows potential to mimic scalability of energy storage technologies

At lab scale and will require

 significant R&D investments before commercialization

Key Takeaways

Early pilots will have higher costs; scale and R&D will need to occur in parallel. Technology innovation is the future of costcompetitive DAC – hybrid electroswing is a high-potential solution. Regional spread of future DAC hubs will be a function of energy prices and subsidies.

5

THANK YOU

WEBINAR

JUNE 20

<u>The Safety Gap: Leaping from Human-</u> <u>Centric Insight to Technological</u> <u>Solution</u>

READ http://www.luxresearchinc.com/blog/

((❶))

LISTEN

Innovation Matters Podcast - Spotify

WISIT

www.luxresearchinc.com

 \succ

EMAIL

questions@luxresearchinc.com

WEBINAR

JUNE 27

<u>How to Implement AI in Your CPG</u> <u>Innovation Workflow to Maximize</u> <u>Outcomes</u>

FOLLOW @LuxResearch **in CONNECT** LuxResearch

ABOUT LUX

Our mission is to advise leaders about commercially viable science and technology to enable sustainable innovation. We deliver research and advisory services to inspire, illuminate, and ignite innovative thinking that reshapes and grows businesses. Using quality data derived from primary research, fact-based analysis, and opinions that challenge traditional thinking, our experts focus on finding truly disruptive innovations that are also realistic and make good business sense. The "Lux Take" is trusted by innovation leaders around the world, many of whom seek our advice directly before placing a bet on a startup or partner — our clients rely on Lux insights to make decisions that generate fantastic business outcomes. We pride ourselves on taking a rigorous, scientific approach to avoid the hype and generate unique perspectives and insights that innovation leaders can't live without.

